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The equation of state of a rea l  gas i n  terms of elementary 

functions i s  derived over a wide range of density var ia t ion,  

including t h e  saturat ion curve and the  l i q u i d  phase region, 

from experimental data of the gas phase. The equation i s  

val id  f o r  t h e  en t i r e  one-phase region, including the  l iquid 

phase. The temperature functions, derived from the  gas phase 

data,  are used t o  describe t h e  l iqu id  phase. Calculation by 

computer i s  outlined, with reference t o  nitrogen. 

The method of representing the equation of state i n  terms of elementary 

functions was proposed i n  i t s  or iginal  form as long ago as 1954 ( B i b i . . l ) .  ii; 

was la te r  successfully used for  an analytic description of t he  thermodynamic be- 

havior of man~j real  gases (Bibl.2 - 8). During this period, the  method of de- 

termining $he elementara functions was modified and improved but has not get at- 

tained %he necessary l e v e l  of perfection. To make our exposition complete, we 

will also present elementary considerations on the  ju s t i f i ca t ion  of t he  method. 

The thermodynamic r e l a t ion  

wr i t t en  f o r  the case of independent variables T and IT, when twice integrated,  

+C I n s t i t u t e  of Marine Zngineers, Odessa. 

3 s -  Numbers i n  the  margin indicate  pagination i n  the  or iginal  foreign text. 
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l eads  t o  the  following form of the  equation of state: 

‘ P = A o ( V ) + A , ( V ) T + Q ( T ,  V), 1 (1) 

where t h e  function Q(T, V) ,  obtained as a result of double integrat ion,  char- 

ac5erizes the  curvature of t he  isochoric sections of the  surface of state of a 

r e a l  gas and i s  small  by comparison with the  linear par t  of t he  equation, 

Ao(V) + A l ( V ) T ,  which i s  confirmed by experiment. 

According t o  the general Bogolyubov-Mayer theorem, the  right-hand s ide  of 

t he  equation of state i s  a power ser ies  i n  densi ty  1/V,  whose coeff ic ients  

(termed vir ia l )  depend on the  temperature. 

and dl(V) are power series (pract ical ly  polynomials) i n  densi ty  1 / V  with con- 

sC,ant coeff ic ients ,  while the  function Q(T, V) i s  a se r i e s  in 1 / V  with tempera- 

ture-depenl3ent coefficients.  

It follows t h a t  t h e  functions A,(V) 

For an analyt ic  descr ipt ion of the f’unction Q(T, V) with the  necessary ac- 

curacy. it i s  convenient t o  represent it i n  the  form of a sum of products of 

functions with separated variables,  i.e., 

852 ( 2) 

Studies show t h a t  it i s  often possible t o  confine the  calculat ion t o  a 

s ingle  t e r m  on the  right-hand s ide  of eq.(2); however, i f  two terms are re- 

tained. $hen eq. (1) w i l l  describe t h e  experimental data  of a real gas with high 

accuracy over a wide range of temperature and pressure variation. 

Passing t o  the dimensionless coofiinates T = T/Tc , 5 = Vc/V, 0 = PV/RT, /130 
and confining ourselves t o  two terms f o r  t he  descr ipt ion of the  curvi l inear  par t  

of Q(T, V) of eq . ( l ) ,  we obtain, a f t e r  introducing 

7 e, t w  + B9 + ;‘p, 
where t h e  functions cyo, c y l ,  b and Y depend on ly  on 

new symbols, 

w, w h i l e  JI and 

( 3 )  

w .  i n  accord- 

2 



ante with the general. theory, a r e  decreasing functions of the  temperature not 

containing T i n  the zeroth an3 first order. 

Let us assume tha t  the  temperature functions 4 and cp a r e  known a s  mono- 

ton ica l ly  decreasing functions of  the  temperature, and t h a t  we a l so  know the  

corresponding volume elementary functions a0,  a1, B ,  Y a t  which eq.(3) s a t i s f i e s  

the  experimental data on t h e  compressibility of  a r e a l  gas over a wide range of 

var ia t ion  of i t s  parameters. 

S ta r t ing  from the  s t ructure  of eq.(3), two lenunas readi ly  amenable t o  d i r ec t  

ve r i f i ca t ion  can be f o r d a t e d .  

We w i l l  c a l l  all these elementary functions %-ueff. 

- -  
Lemma 1. The introduction i n t o  eq.(3) of new functions B ,  Y which a re  

l i n e a r  combinations of "trueff B and Y preserves t h e  v a l i d i t y  of t he  equation 

and may lead t o  new temperature functions which a r e  l i n e a r  combinations of  the 

"truelf Q a,nd cp.  

Lemma 2. The replacement of t he  %ruerr temperature functions $ an4 qj o r  

of t h e i r  l i n e a r  combinations by new T, i n  the form of 

vhere a,,. a .  bo, b a r e  a r b i t r a r y  constants, does not impair the  v a l i d i t y  of 

eq. (3) and o n l ~  leads t o  the  new functions a ~ ,  a ~ ,  which a re  connected with the 

%ruerf functions i n  the following way: 

- -  

These lemmas continue t o  hold, regardless of the  number of functions i n  

t h e  curvi l inear  par t  of  eq.(3). 

venient method of analybic determination of the  volume elementary functions ao, 

This permits us t o  propose a simple and con- 

1, b ,  Y e -. . bg the aid of the equations of isotherms which w i l l  be termed 

The number of base isotherms should be equal t o  the bas i s  i n  what follows. 

3 



number of  volume elementarrr functions; they a re  selected in t h e  region in which 

the  most re l iab le  experimental data have about t h e  same o r  a greater extent i n  

density (11. 

The base isotherms are analytically described i n  t h e  form of polynomials 

i n  densit-i 0.’; t o  s a t i s f y  the  c r i t i c a l  point and the  c r i t i c a l  conditions, one of 

the  isotherms selected will be the  c r i t i c a l  isotherm whose equation satisfies 

these conditions. 

For the  case of two temperature functions i n  the curvil inear par t  of t he  

equation, l e t  us take four isotherms a5 the  temperatures 71, 7 2 ,  7 3 ,  7 4 ,  and 

m i t e  the  s:rstem of four equations i n  the form 

+ elf( + BWd+ TY(Tt )  = 01 ,  ’, (6  1 

where i takes the  values 1, 2, 3, L in increasing order of  temperature (the 

subscript  1 relates t o  the  c r i t i c a l  isotherm), while 0 1  i s  the  analyt ic  expres- 

s ion of t he  ith isotherm i n  the  f o r m  o f  a poiynomiai i n  w. 

Eliminating C y o ,  cy1 from the  system of equations ( 6 ) ,  we obtain on t h e  l e f t -  

hand sirle %rue combinations of %rueff B and y ,  and on the  right-hand s ide  t h e i r  

corresponding anal.”%ic expressions. 

function 8 ,  an3 t he  other as the  function 7; thus,  we have solved the  problem 

of ;-letermining the  volume functions of the  curvil inear par t  of eq.(3). 

Ye take one o f  these expressions as t h e  /131 
- 

To determine the  elementary functions of t he  linear par t  of eq,(3), l e t  us 

make use of Lemma 2, 

t i ons  and cp on two 

bas ic  isotherms, f o r  

- 
from which it fol lows t h a t  t he  values of t he  new func- 

i so therm may be a r b i t r a r i l y  assigned. 

example 71 and 7 4 ,  are taken f o r  t h i s  purpose. 

Two o f  t h e  four 

Le: us rewrite eq. ( 3 ) ,  

I n  accordance with the  

subst i tut ing the  ‘%rueff functions by new ones - 
-- 4 t G,r + fq + ri. (3’) 

preceding, l e t  us take, on the  isotherms 71. ‘r4, 

r, 



. 
I 

- 
S(%)  - act,, = 

a f t e r  which, f r D m  eq.(3f) ,  we obtain f o r  these isotherms: 
- -  - -  

(7) $- ' 1  = O1 t + QlY4 I t I 

i 

I n  the  system of equations (7), l e t  us subs t i tu te  01, 02 by t h e i r  an&.tic ex- 

pressions, and l e t  us f ind go and ;I; thereby a l l  four volume functions have 

been de5ermineS i n  eq. (3'). 

basic isotherms remain m k n m s .  Their may be determined from the  available ex- 

perimental .lata on each isotherm, f o r  example by the method of l e a s t  squares. 

I% i s  simpler, however, t o  use the  more convenient method of l inear iza t ion ,  

The temperature functions 7 and along the  non- 

which i s  as f o l l a r s :  

Let us r e x r i t e  eq.(3f)  i n  the  form of 

If, f r 3 ~  t h e  e,xperiment.al data, ve  plot  on each i s c  heTm the left-hand s ide 

of eq. (8) against the  quotient Y / a ,  : .~e should obtain a s t r a igh t  l i n e  whose char- 

a c t e r i s t i c s  equal the  values of  T and ; on the @Ten isotherm. 

- -  
If, however, we 

ob5ain d i s t i n c t l y  curved l i n e s  on the  isotherms, t h i s  indicates  t h a t  it i s  in- 

suffin,ien% t o  use on ly  two  terms i n  the curvil inear par t  of the  equation of 

&ate;  one more teym and a f i f t h  base isctherm must be introduced. On the o the r  

hand, it XM:~ a l so  happen tha t  B i s  proportional t o  7 and t h a t  the quotient Y/a 

remains p rac t i ca l ly  constant, This means t h a t ,  in the curvi l inear  par t  of  the 

- -  - 

equa';ion, we must r e t a i n  o n l y  a single term and use o n l y  th ree  base isotherms. 

L.n f ac t ,  i n  accordance with eq.(8), a l l  cases considered up t o  now re su l t  

i n  s t r a i g h t  l i n e s ,  which must be s o  drawn as t o  minimize the  sca t te r ing  of  the 

t e s t  points  and yield optimum agreement wi th  t he  experimental data ,  making 

ce-tain at  the same time tha t  the values o f  7 and l i e  on smooth curves depend- 

5 
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i ng  on the  temperature. 

Ha.,ing obtained the  graphs of the functions and over the  e n t i r e  f132 

I .  

temperature range f o r  which data  a re  available, l e t  us s e t  up the analyt ic  ex- 

pressions of these functions according t o  eq. (5) i n  the form of 

For good sa5isfaction of the  values found fo r  t he  functions 7 and F,  l e t  

us take a suf f ic ien t  number of  terms i n  eqs.(9), with the  s t ipu la t ion  tha t  the  

func5ions on the base isotherms assume the prescribed values. In  eqs.(9), the 

po1;momial in 1/~ can be replaced by other decreasing functions o f  the tempera- 

tu re .  i f  they $eld sa t i s fac tory  agreement i n  a simpler manner, 

L e t  us subs t i tu te  the  anal;rtic expressions (9) i n t o  eqe (3 t )  and co l lec t  

the  terms i n  7 in the  zeroth anii first order, w:-Lch -~,511 reducc this nnliD+.i u.-l------- on 

t o  the  form of  eq.(3) i n  which the  factors before a and 7 a r e  monotonically de- 

creasing functions of temperature, 

The equation of s t a t e ,  s e t  up i n  t h i s  m e r ,  Will fully agree w i t h  the 

experimental thermal data ,  including the sa tura t ion  curve, provided t h a t  the 

equations of t he  base isotherms a re  suf f ic ien t ly  accurate. It can a l so  be as- 

ser ted $hat the equation p r i l l  be i n  sa t i s fac tory  aqeement with the ca lor ic  

quan t i t i e s ,  since analogous equations obtained by a l e s s  improved method have 

been i n  2003 agreement with these data, as has been ver i f ied repeatedly. 

However, i 5  i s  possible t o  ensure optimum agreement with the  experimental. 

ca lor ic  data  i f  they a r e  representeJ suf f ic ien t ly ,  using them i n  deriving the 

equation of s t a t e  fo r  correcting the temperature functions by t h e i r  first and 

second 3eyiaaCives. The calculated e,xpressions f o r  t he  enthalpy resu l t ing  from 

6 



eq.(3t)  contain the f i r s t  deri-Jatives o f  the  functions 7 and G, while the  calcu- 

l a t ed  expressions f o r  t he  heat capacity cp contain the  second derivatives a s  

x e l l ,  s o  =:?at these Ieritrati-Tes can be Zetermined from the  experimental ca lor ic  

da5a (as %lie functions T and 

which we have described in d e t a i l  elsewhere (Bibl.2). 

themselves a re  determined from the  thermal data) ,  

A 5  the  present time, equations of s t a t e  must not o n l y  properly describe 

2he thermal and calor ic  experimental data, but must a l s o  give r e l i ab le  r e su l t s  

at high temperatures (3000OK and above) f o r  which there  a r e  no experimental data 

i n  existence- 

To extrapolate an equation of s t a t e  t o  the high-temperature region, a re- 

l i a b l e  method of extrapolating the  functions ? and ; t o  t h i s  region must be 

foun4. 

e f f i c i e n t .  which can be calculated by methods of s t a t i s t i c a l  physics. 

problem 5.5 f ac i l j t a t ed  b:r t he  f ac t  tha t  the  curvi l inear  par t  of eq.(3t), a t  high 

temperatures, i s  described with suff ic ient  accuracy by a s ingle  term, i . e * ,  the  

functions and become equal. Since the  l i n e a r  par t  o f  t he  second v i r i a l  co- 

e f f i c i e n t  i s  known from the  equation o f  s t a t e  ( 3 9 ) ,  t he  curTJilinear part  and /133 

thus a l so  the temperature function, i s  ea s i ly  determined from i t s  values founi 

b-r t he  s t a t i s t i c a l  method. 

The extrapolation m a 7  be performed by the  ai3 of t he  second virial co- 

The 

Using the  above-described method, t he  equakion of state can be se t  up over 

a wide range of densi ty  var ia t ion,  embracing the saturat ion curve and the  region 

of t he  l i qu id  phase, provided tha t  the  data  i n  t h i s  range, a t  supercr i t ica l  

tempera=ures, a r e  repyesented i n  the  form of a rectangular net of isotherms and 

isochores.  

%e gas phase f o r  T > 1 a r e  given i n  the form of  a rectan,dar  net of isotherms 

and i sobars  at  r e s t r i c t ed  dens i t ies ,  and no experimental data  ex i s t  fo r  densi- 

There a r e  mar- cases, however, i n  which the  experimental data i n  

7 



t i e s  corresponding t o  the l iquid phase. 

%emperatures, i s  represented by data i n  a narrow i n t e rva l  of  density var ia t ion 

on each isotherm, which s h i f t s  i n t o  the region of increasing values of u) with 

decreasin? temperature. 

The l iqu id  phase i t s e l f ,  at subc r i t i ca l  

To obtain,  in t h i s  case, the  equation of s t a t e  representecl i n  terms of 

elementar-. functions over the  en t i r e  range of densitv var ia t ion,  we must pro- 

ceed as follows: 

From the  experimental data of the  gas phase, using the method described 

above, we construct an equation of s t a t e  t h a t  i s  val id  up t o  a cer ta in  density 

wg,  determined by these experimental data. In t h i s  equation, the temperature 

Funcbions are j e t e r r h e 3  i n  the en t i r e  temperature in t e rva l  f o r  which data ex- 

i s t ,  inclu-ling low temperatures of the order of the  normal boi l ing point and be- 

low it. 

C h e r a l  considerations connected with the  continuity of the  gaseous and 

l iqu id  s t a t e ,  as :Jell a s  experimental ver i f ica t ion ,  show t ha t  the en t i r e  one- 

phase region. including the  l iqu id  phase, can be described by the  a id  of an 

equation represented i n  terms of elementar- functions. 

It m a - r  be concluded from t h i s  that  t he  temperature functions, derived from 

da ia  of t he  gas phase, ma;r be used t o  describe the  l iqu id  phase. 

it possible  t o  determine, b:r the method of l e a s t  squares, the  volume functions 

oTrer a l l  density var ia t ions,  i .e . ,  the coeff ic ients  of the polynomials i n  terms 

of which the:,. a r e  represented, However, i n  connection with the  la rge  number of 

unknown coeff ic ients  s o  obtained, the  only  wa:T the problem can be solved i s  w i t h  

a computer. 

This  makes 

To simplif-7 the problem, it i s  suggested t o  separately describe the l iqu id  

phase b-. means of  the equation 

8 
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where %he temperature functions 0 and cp coincide with the corresponding func- 

t ions of the gas phase. The unknowns i n  eq. (10) a r e  the  volume elementary func- 

t ions QOf, cflf , gf, and Y p  , or acre  accurately the  coeff ic ients  of the  poly- 

nomials i n  density a, describing these functions. Prescribing the number of  

%erns i n  each of  these polynomials, the coeff ic ients  may be determined b g  t he  

method of l e a s t  squares f romthe  experimental data of the l iqu id  phase and the 

lower boundar-7 cur7;e, provided the  functions ? and (p i n  eq.(lO) a re  known. 

To obtain a smooth course of  the functions on t r ans i t i on  from the gas t o  

the l iqu id  phase, i t  must be s t ipulated t h a t ,  a t  a density WO, not only the 

values of the corresponding functions o f  the  gas phase and l iqu id  phase s h a l l  

coincide but a l s o  t h e i r  first derivatives,  To obtain a l so  a smooth course of 

the isotherms an3 e1ernentar.r functions a t  high densi t ies ,  the equations f o r  both 

phases must not o d ; ~  satisQr t h e  q w i m e n t a l  data  themselves but a l s o  the  

!4am~ell ru le ,  with acceptable accuracy, f e r  t h e  isotherms 7 1. %ith t h i s  ob- 

j e c t ,  the  condition equations designed t o  s a t i s f y  the experimental data  of the 

l i p i d  phase should include a cer ta in  number of  condition equations expressing 

the %.xwell rule.  

&& 

The above-Jeszribei method of constructing the equation of  s t a t e  has given 

I n  par t icular ,  the method has been used sa t i s f ac to ry  r e su l t s  i n  prac t ica l  use, 

b-7 A.!i.Vasserman t o  describe the therncdpamic properties of nitrogen f rom the 

experimental data  (Bibl.9 - 11) . 
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